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Numerical studies of flames in wide tubes: Stability limits of curved stationary flames
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Flame dynamics in wide tubes with ideally adiabatical and slip walls is studied by means of direct numerical
simulations of the complete set of hydrodynamical equations including thermal conduction, fuel diffusion,
viscosity, and chemical kinetics. Stability limits of curved stationary flames in wide tubes and the hydrody-
namic instability of these flames~the secondary Darrieus-Landau instability! are investigated. The stability
limits found in the present numerical simulations are in a very good agreement with the previous theoretical
predictions. It is obtained that close to the stability limits the secondary Darrieus-Landau instability results in
an extra cusp at the flame front. It is shown that the curved flames subject to the secondary Darrieus-Landau
instability propagate with velocity considerably larger than the velocity of the stationary flames.

PACS number~s!: 47.20.2k, 82.40.Py
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I. INTRODUCTION

As is known@1,2#, the curved shape of a premixed flam
front results in increased velocity of flame propagation
comparison with the velocity of a planar flameU f , since a
curved flame has a larger surface area and consumes
fuel per unit time. Quite often a curved flame shape devel
due to the hydrodynamic Darrieus-Landau~DL! instability
inherent to any flame in a gaseous fuel mixture@3#. Accord-
ing to the linear theory of the DL instability@4#, two- and
three-dimensional perturbations of a planar flame front gr
exponentially in time and bend the front, if the perturbati
wavelength exceeds the cut-off wavelengthlc . The instabil-
ity growth rate depends on the expansion coefficientQ of the
flame defined as the ratio of the fuel density to the density
the burnt matter, which takes the valuesQ55 – 10 for labo-
ratory flames. The cutoff wavelengthlc is proportional to
the flame thickness with a large numerical factor about
and larger. Perturbations of a shorter wavelengthl,lc are
suppressed by thermal conduction. If one considers deve
ment of the DL instability at a flame front propagating in
two-dimensional~2D! tube with ideally slip and adiabatica
walls, then the instability occurs for a tube width exceed
the critical valueRc5lc/2, since the width of an ideal tub
determines half of the maximal possible perturbation wa
length @5#.

Outcome of the DL instability at the nonlinear stage h
been a subject of long discussions starting from the orig
papers by Darrieus and Landau. First it was assumed tha
DL instability leads to flame self-turbulization@3#. Then it
was proposed that the instability results in a smooth cur
stationary shape of a flame front instead of the s
turbulization@6,7#. Curved stationary flames like that show
in Fig. 1 have been observed in numerical simulations
flame dynamics in 2D tubes of moderate widthsRc,R
PRE 611063-651X/2000/61~1!/468~7!/$15.00
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,3Rc @5,8#. The analytical theory of curved stationary flam
has been developed in Ref.@9#, where it was obtained tha
the velocity of a curved stationary flame in an ideal tu
depends on the tube widthR and on the expansion coefficien
of the fuelQ as

Uw2U f54UmM
Rc

R S 12M
Rc

R D , ~1!

with the maximal velocity amplification

Um5U f

Q

2

~Q21!2

Q31Q213Q21
, ~2!

and M5Int@R/(2Rc)11/2#. The dependence of the scale
flame velocity on the inverse tube width found analytically
presented in Fig. 2 by the solid line. An important feature
the obtained formulas is existence of a maximal velocity o
curved stationary flame in a 2D configuration (Uw)max5Uf
1Um, that cannot be exceeded with increase of the tu
width. The analytical results of Eqs.~1! and~2! are in a very
good agreement with the velocity amplification found in d

FIG. 1. The shape of a stationary curved flame with the exp
sion coefficientQ58 in a tube of widthR51.8Rc . The isotherms
correspond to the temperatures from 600 to 2100 K with the s
300 K.
468 ©2000 The American Physical Society
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PRE 61 469NUMERICAL STUDIES OF FLAMES IN WIDE TUBES: . . .
rect numerical simulations of flames in moderate tubes w
ideally slip and adiabatical walls@5# shown by circles and
triangles in Fig. 2.

However, curved stationary flames like that shown in F
1 cannot happen in reality in very wide tubes. Indeed, as
tube width goes to infinity, the radius of curvature of t
curved stationary flames becomes infinite too. In that c
the stabilizing influence of the curved flame shape weake
the flame front resembles locally a planar flame and the
instability should occur on a new scale as discussed in R
@10#. This secondary DL instability presumably leads to a
ditional wrinkling of the front and to additional increase
the flame velocity. Theoretical studies of the secondary
stability have been performed mostly on the basis of a n
linear equation for a flame front derived in Ref.@11# in the
peculiar limit of small expansion coefficientsQ21!1 ~the
Sivashinsky equation!. These studies involved much contr
versy, since it was shown in@12# that curved stationary
flames described by the Sivashinsky equation are line
stable independent of the radius of curvature of the fla
The last result has been confirmed in later papers base
the Sivashinsky equation@13,14#, though it obviously contra-
dicts physical understanding of the secondary DL instabi
@10#. In order to avoid the contradiction it was proposed
Ref. @13# that curved stationary flames are nonlinearly u
stable in wide tubes against perturbations of some finite
plitude. Still many questions remained without an answ
even in scope of the idea of the nonlinear instability. Parti
larly, there was no indication what are the stability limits
curved stationary flames with respect to linear or nonlin
perturbations. Besides, it was claimed in Ref.@15# that it is
impossible to describe correctly the secondary DL instabi
using the Sivashinsky equation.

A nonlinear non-stationary equation for curved flam
with arbitrary large expansion coefficients has been deri
recently in Ref.@16#. The complete form of the equation
rather complicated, but for a flame frontz5F(x,t)2U ft
with thicknessL f it may be presented as

FIG. 2. Scaled velocity of a 2D curved stationary flame in
ideal tube vs the inverse tube width obtained from the analyt
formula Eq. ~1!. The dashed line presents flame velocity for t
symmetric flame shape. The markers show results of nume
simulations of Ref.@5# ~triangles forQ53, circles forQ55) and of
the present paper~squares forQ56, diamonds forQ58, crosses
for Q510).
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Q11

2Q
~11L fC1F̂!F̂21

1

U f

]2F

]t2 1~11L fC2F̂!
]F

]t

1
Q

2
~¹F !21

~Q21!3

16Q

]2F

]t2 @~¹F !22~F̂F !2#

2
Q21

2
~12L f C3F̂!F̂F1C t50, ~3!

where the operatorF̂ implies multiplication by the absolute
value of the wavenumber in Fourier-space, and the numer
coefficientsC1 , C2 , andC3 may be found in scope of the
linear theory of the DL instability@17#. Particularly, one has
lc52pC3L f . The simbol C t stands for nonlinear time
dependent terms of the equation. Stability investigation
curved stationary flames on the basis of Eq.~3! has shown
that curved stationary flames do become unstable in s
ciently wide tubesR.Rw , where the critical tube widthRw
characterizes the stability limits with respect to the seco
ary DL instability. It has been obtained that the stability lim
Rw depends on the expansion coefficient of the flame be
also proportional to the critical tube width of the primary D
instability Rc . Below we shall call the valueRw the second
critical tube width to distinguish it from the first critical tub
width Rc . It has been found in Ref.@16# that the second
critical tube width is aboutRw /Rc'4.2 for flames with re-
alistic expansion coefficientsQ55 – 10 and this value in-
creases as the expansion coefficient goes to unity. Ta
into account the theory developed in Ref.@12# one can con-
clude that the second critical tube width becomes infin
Rw→` for Q→1. It was also found in Ref.@16# that stabil-
ity limits of curved stationary flames do not depend on
particular form of the nonlinear time-dependent termC t in
Eq. ~3!.

In the present paper we perform the first numerical stu
of the stability limits of curved stationary flames and t
secondary DL instability. We investigate flame dynamics
wide tubes with ideally adiabatical and slip walls by use
direct numerical simulations of the complete set of hydrod
namical equations including thermal conduction, fuel diff
sion, viscosity and chemical kinetics. The stability limi
found in the present numerical simulations are in a very go
agreement with the theoretical prediction of@16#. We show
that the secondary DL instability for tube widths close to t
stability limits results in an extra cusp at the flame front. It
also obtained that the curved flames subject to the secon
DL instability propagate with velocity considerably larg
than the velocity of the stationary flames Eqs.~1! and ~2!.

II. BASIC EQUATIONS AND THE NUMERICAL SCHEME

We solve numerically equations of hydrodynamics a
chemical kinetics. For the sake of simplicity a single irr
versible reaction is admitted, so that the governing equati
are the following:

]r

]t
1

]

]xk
~ruk!50, ~4!
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]

]t
~rui !1

]

]xk
~ruiuk1d ikp2s ik!50, ~5!

]

]t
~re1 1

2 ruiui !1
]

]xk
@ruk~h1 1

2 uiui !2uis ik1qk#50,

~6!

]

]t
~rY!1

]

]xk
S rukY2Le

h

Pr

]Y

]xk
D52exp~2E/RgT!,

~7!

whereY is the fuel mass fraction,e5QY1CvT is the inter-
nal energy andh5QY1CpT is the enthalpy. We consider
reaction of the first order with the energy releaseQ. The
temperature dependence of the reaction rate is given by
Arrhenius law with the activation energyE and the constan
of time dimensiontR . The stress tensor and the energy d
fusion vector are given by the formulas

s ik5hS ]ui

]xk
1

]uk

]xi
2

2

3
d ik

]ul

]xl
D , ~8!

qk52
h

PrS cp

]T

]xk
1LeQ

]Y

]xk
D , ~9!

where Pr is the Prandtl number and Le is the Lewis numb
Since the transport properties of the fuel do not influence
nonlinear stage of the DL instability of a flame front in
tube with ideally slip and adiabatical walls@5,9#, then we
consider the fuel with a constant coefficient of thermal co
duction, constant Prandtl number and unit Lewis num
Le51. We take the gas mixture under consideration to b
perfect gas of molecular weightm with the equation of state
P5RgrT/m. We choose the axisz directed along the wal
and the axisx in the transverse direction. An infinite lengt
of the tube is assumed, which is achieved in simulations
an appropriate choice of the computational intervals. T
boundary condition at the ideally adiabatical and slip wa
of the tube of widthR may be written as

ux50, uzÞ0,
]T

]x
50 at x50,R. ~10!

The initial temperature of the fuel isTf5300 K and the
pressure isPf5105 Pa. The viscosity coefficient of the fue
is h51.8231025 N s/m2 with the molecular weightm
52.931023 kg/mol and the specific heatCp57Rg/2m. The
velocity of a planar stationary flameU f is determined by the
chosen values of the chemical parameters of the fuel. We
interested in dynamics of a slow flame with a velocityU f
much less than the sound speedcs . We choose the chemica
parameters of the fuel in such a way that the flame pro
gates in an almost isobaric regime with the Mach num
M5U f /cs50.01. Then the main parameters of the simu
tions are the tube widthR and the expansion coefficientQ.
For the case of isobaric flames the expansion coefficien
determined by the energy release in the reactionQ51
1Q/(CpT). When the velocity of a planar flame is know
the thickness of the flame front may be calculated by
formula L f5h/(Prr fU f). Development of the DL instabil-
ity at the nonlinear stage in the case of unit Lewis numbe
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independent of the activation energy of the reaction@5,9#.
Therefore, in all simulations we keep the same scaled va
of the activation energyE/(QRgTf)57.

The calculations consisted of the following stages sim
to the calculations performed in@5#. First we ignited a planar
stationary flame. To maintain the planar flame at the cen
of the tube close to the pointz50 we imposed the following
boundary conditions in the incoming flow of the fuel atz5
2Z` : T5Tf , r5r f , uz5U f , ux50, Y51. Similar bound-
ary conditions for the outgoing uniform flow of the burn
matter (z51Z`) follow from the conservation laws o
mass, momentum and energy. When a planar station
flame is established, we impose 2D perturbations at the fla
front uz→uz1ũz(x,z), where ũz(x,z)
5uz(z)A0 cos(px/L)exp(2p2 z2/L2) with the initial dimen-
sionless perturbation amplitudeA051023. The small pertur-
bations grow because of the DL instability until the flam
acquires a curved shape. As the curved shape of the fl
develops, the flame velocity increases and the flame fr
pushes weak pressure waves. To avoid undesirable re
tions of the pressure waves at the ends of the computati
domain we used special precautions described in@5#.

We carried out the numerical simulations using 2D hyd
dynamic Eulerian code based on the cell-centered fin
volume scheme which was described in details previou
@5,18,19#. We used a rectangular grid imposed on the fin
computational domain with boundaries atz56Z` in the
longitudinal direction, withZ` being 510L f . The size of the
mesh in the vicinity ofz50 was adjusted to the structure o
the flame front. Along thez axis we used nonuniform grid: in
the domain240L f,z,40L f the grid step was constan
0.2L f , but outside that area the step increased gradually w
factor 1.18. In the transverse direction the grid was unifo
with the stepR/N with N520 for narrow tubes withR
,2Rc andN530 and more for wide tubesR.2Rc . In order
to check if the number of the grid points in the transve
direction is sufficient we performed some calculations
wide tubes withN540. However the larger number of gri
points did not lead to any noticeable change in the resu
On the contrary, if one takesN520 for wide tubes, then the
physical results of calculations do change though not dra
cally, but noticeably. Particularly, for a flame withQ58 one
obtains the stability limitRw'3.8Rc for N520, while calcu-
lations withN530, 40 giveRw'4.2Rc in that case.

III. SIMULATION RESULTS

The main dimensionless parameters that determine
namics of curved flames in ideal tubes are the expans
coefficient of the flameQ and the scaled tube widthR/Rc .
Present numerical simulations of flame dynamics in narr
tubes R/Rc,1 and tubes of moderate width 1,R/Rc,3
demonstrate results similar to the previous simulations@5#
and to the analytical theory@9#. We have obtained that in
narrow tubesR/Rc,1 the DL instability is suppressed b
thermal conduction. Even if we impose initial perturbatio
of an appreciable amplitude, after some transitional time
perturbations vanish and the flame propagates as a pl
front.

In tubes of a moderate width 1,R/Rc,3 the DL insta-
bility develops and leads to a smooth curved stationary fla
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front like that shown in Fig. 1. The flame front may be d
scribed as a hump directed towards the fresh fuel mixt
and a cusp pointing to the products of burning. The mark
~squares, diamonds and crosses! in Fig. 2 show the velocity
amplification for flames with different expansion coefficien
versus the inverse scaled tube width obtained in the pre
simulations. As one can see in Fig. 2, in agreement with
analytical theory@9# the velocity of the curved stationar
flame is equal to the planar flame velocity forR,Rc . In-
crease of the tube width leads to increase of the flame ve
ity until it reaches a local maximum. The analytical nonli
ear theory@9# predicts the local maximum for the tube wid
equal to the doubled first critical valueR52Rc . The point of
the first local velocity maximum of a curved stationary flam
is also a special point in the linear theory of the DL instab
ity @4#. According to the linear theory perturbations of
small amplitude at a planar flame front have the largest p
sible instability growth rate for the tube of widthR52Rc .
The maximal velocity amplification for curved stationa
flames depends on the expansion coefficient of the fuel:
larger the expansion coefficient, the stronger the DL insta
ity and the larger the velocity amplification. The calculat
values of the maximal velocity amplification are in a ve
good agreement with the analytical formula Eq.~2!.

Absolutely new effects of the secondary DL instabili
quite different from those observed in the previous simu
tions @5# and predicted by the theory of curved stationa
flames@9# have been obtained in the present numerical sim
lations in the case of a sufficiently wide tube. In order
describe these effects it is convenient to use Fourier exp
sion of the isotherms of a flame front and to study tim
history of the amplitudesFn(t) of the Fourier harmonics
Since all isotherms are parallel to each other with a go
accuracy, then it does not matter which of the isothermT
5T* one chooses to study. An isothermz5F(x,t) is calcu-
lated from the equationT(x,z,t)5T* and then the ampli-
tudesFn(t) are determined asF(x,t)5SFn(t)cos(npx/R).
The isotherms of a flame front with the expansion coeffici
Q58 propagating in a tube of widthR54.6Rc are shown in
Fig. 3 at different time instants after initiation of the D
instability tU f /R52.1, 2.9, 3.5, and 7.4. The respective tim
history of the amplitudes of the Fourier harmonics and
velocity amplification is presented in Fig. 4. As one can s
in Figs. 3~a! and 4~a!, in the beginning the flame fron
evolves similar to the case of curved stationary flames.
first Fourier harmonic grows exponentially in time and i
duces growth of other harmonics due to the nonlinear in
action. As a result the flame acquires a shape similar to
shown in Fig. 1 with a well distinguished hump and cus
The only difference of the flame in Fig. 3~a! from the sta-
tionary flame presented in Fig. 1 is a much flatter hum
Figure 3~a! corresponds to the time instant when the amp
tude of the first Fourier harmonic reaches its maximum. T
flat hump in Fig. 3~a! resembles locally a planar flame fron
which leads to development of the secondary DL instabi
at the front. As one can see in Fig. 3~b! an extra cusp appear
on the flat part of the front next to the center of the tub
starts growing and shifting in the direction of the hump. Th
leads to additional strong bending of the flame front, unt
new large cusp is formed near the wall@Fig. 3~c!#. This ex-
treme flame shape corresponds to the sharp peak in the
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lution of the Fourier harmonics in Fig. 4~a!. The peak of the
amplitudes is accompanied by abrupt increase of the fla
velocity @Fig. 4~c!#. However, this state of the flame is no
stationary. As one can see in Fig. 4, the amplitude of Fou
harmonics and the flame velocity oscillate. From the point
view of flame isotherms the pulsations imply change
depth of the cusps at the flame front with the characteri
flame shape shown in Fig. 4~d!. Though the pulsations on
Fig. 4 are shown only up totU f /R58, a similar regime of
pulsations have been actually observed in the simulations
thrice longer time. The secondary DL instability results
considerable growth of the second Fourier harmonic, wh
the first harmonic looses its dominant role. As a rule, the n
extra cusp developing at the flame front has noticeably lar
depth than the first one. The final shape of the flame fron
Fig. 3~d! is quite different from the shape of curved statio
ary flames observed in@5# and described by the analytica
theory@9#. First indication on the described above changes
a flame shape in wide tubes has been obtained in@20# for the
case of fast nonisobaric flames with rather large Mach nu
bers of the incoming flow. Similar oscillations of the curve
flame velocity have been also obtained in@21# in one of the
calculation runs for the case of periodic boundary conditio
with the periodl54.25lc . This period of flame structure is
very close to the stability limit of curved stationary flam

FIG. 3. Evolution of a flame front with the expansion coefficie
Q58 in a tube of widthR54.6Rc . The isotherms correspond t
the temperatures from 500 to 2100 K with the step 400 K at
time instantstU f /R52.1, 2.9, 3.5, and 7.4@~a!, ~b!, ~c!, and ~d!,
respectively#.
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found in the present paper. The small deviation of the res
@21# from our results may be explained by somewhat low
calculation accuracy of the mentioned simulations, wh
leads to smaller stability limits~see discussion at the end
the previous section!. One more comment should be give
concerning Figs. 3 and 5. The adiabatic boundary condi
at the walls requires that flame isotherms should touch
walls at a right angle, which is not obvious for some of t
isotherms at the figures. However, the ‘‘smashed’’ rig
angle for these isotherms results from smoothing of
curves on the figures and has nothing to do with numer
accuracy of the calculations.

However, the described above scenario of the secon
DL instability is not the only possible one. For example,
the case of a flame in a tube of the same widthR54.6Rc but
with smaller expansion coefficientQ56 ~see Figs. 5 and 6!
the extra cusp arising near the center of a tube@Fig. 5~b!#
shifts not in the direction of the hump as in the previous c
but to the cusp. This causes additional stretching of the c
while the front retains its original shape@Fig. 5~c!#. This case
is also characterized by rapid increase both of the amplitu
of Fourier harmonics@Fig. 6~a!# and of the velocity amplifi-
cation @Fig. 6~b!#. But after short time the flame front als
acquires its new shape@Fig. 5~d!# similar to that described
above@Fig. 3~d!#. It is interesting to note, that in the last ca
the final flame shape is practically stationary.

Another important point is that the new shape of the fla
front leads to considerable increase of the flame velocity
comparison with the velocity of curved stationary flames
scribed in@5,9#. The velocity amplification for flames with
the expansion coefficientQ58 versus the tube width is
shown in Fig. 7 by diamonds. Careful investigation of flam
dynamics in tubes of different widths for a fixed expansi
coefficient of the fuelQ58 shows that the additional veloc
ity amplification and the described changes in the fla
shape take place for the tube width larger than some crit

FIG. 4. The time history of the scaled amplitude of the first th
Fourier harmonics@~a!, curves 1, 2, 3# and the scaled flame velocit
~b! in a tube of widthR54.6Rc . The expansion coefficient of th
flame isQ58.
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valueR.4.2Rc . The critical valueRw54.2Rc represents the
stability limit of a curved stationary flame with the expansi
coefficientQ58. Similar dependence of the velocity amp
fication on the tube width has been obtained for flames w
other expansion coefficients. Particularly, the additional
locity amplification has been observed for flames with t
expansion coefficientQ510 for a tube width R.Rw
54.3Rc ~shown by circles in Fig. 7! and for flames with the
expansion coefficientQ56 for a tube width R.Rw
54.4Rc ~shown by triangles in Fig. 7!. The stability limits of
curved stationary flames found numerically in the pres
simulations are compared to the theoretical predictions
@16# in Fig. 8. As one can see in Fig. 8 the numerical a
theoretical results are in a very good agreement.

IV. DISCUSSION

Simulations of the present paper demonstrate that cur
stationary flames in tubes with ideally slip and adiabati
walls become unstable as soon as the tube width exc
certain critical valueRw . For flames with realistic expansio
coefficients the second critical tube widthRw is approxi-
mately four times larger than the first critical tube widthRc ,
for which the DL instability overcomes the stabilizing influ
ence of thermal conduction:Rw /Rc54.224.4. The obtained

e

FIG. 5. Evolution of a flame front with the expansion coefficie
Q56 in a tube of widthR54.6Rc . The isotherms correspond t
the temperatures from 500 to 2100 K with the step 400 K at
time instantstU f /R52.5, 3.9, 4.8, and 8.8@~a!, ~b!, ~c!, and ~d!,
respectively#.
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stability limits of the curved stationary flames are in a ve
good agreement with the theoretical predictionsRw /Rc

54.224.3 @16#. In wider tubes the secondary DL instabilit
takes place, which is the next step in the development of
instability at a planar flame after the primary DL instabilit
While the primary instability results in curved stationa
flames for the tube widthRc,R,Rw , the secondary one
leads to an extra cusp at the flame front for wider tubesR
.Rw and sometimes to pulsations of the flame shape.
primary instability amplifies the velocity of a flame fron
with a realistic expansion coefficient by the factor abo
Uw /U f51.221.35 determined by Eq.~2!. Taking into ac-
count physical similarity between the primary and second
instabilities one should expect that the secondary instab
leads to amplification of the flame velocity by the factor

FIG. 6. The time history of the scaled amplitude of the first th
Fourier harmonics@~a!, curves 1, 2, 3# and the scaled flame velocit
~b! in a tube of widthR54.6Rc . The expansion coefficient of th
flame isQ56.

FIG. 7. The scaled velocity of a curved stationary flame a
function of the inverse tube width for different expansion coe
cients:~1! Q56; ~2! 8; ~3! 10. The markers show the results of 2
simulations, the solid lines present the best parabolic approxi
tion.
e

e

t

y
ty

Uw /U f5F11
Q

2

~Q21!2

Q31Q213Q21
G 2

~11!

for the tube widthsRw,R,Rw
2 /Rc . According to the esti-

mate Eq.~11! the characteristic amplification of the flam
velocity due to the secondary DL instability isUw /U f51.6
for Q56, Uw /U f51.76 forQ58 andUw /U f51.85 forQ
510. The respective numerical results for the velocity a
plification areUw /U f51.4;1.5;1.7 forQ56;8;10,which is
somewhat smaller than the estimate Eq.~11!. However, the
growth of flame velocity with the tube width obtained
numerical simulations is not saturated yet. For wider tub
one should expect even larger flame velocities. Thus acc
ing to the theoretical predictions and to the numerical res
flame velocity is amplified about twice for flames with rea
istic expansion coefficients in tubes of widths 4Rc,R
,16Rc .

For wider tubes further development of the DL instabili
is expected leading to a fractal flame structure similar to t
observed in the experiments@22#. In a certain sense one ca
interpret the fractal structure as spontaneous turbulizatio
the flame front. A fractal structure of a flame front implie
cascades of humps and cusps of different sizes imposed
on another. The fractal flame structure may be described
tatively in the following way. Assuming that every step
the cascade amplifies the size of the humps and the fl
velocity by the factorsb and b, respectively, one finds tha
the velocity of the fractal flame depends on the largest p
sible length scale characterizing flame dynamics as@23#

Uw}~Rmax/Rmin!
d, ~12!

where d5 ln b/ ln b is the excess of the fractal dimensio
over the embedding dimension. Evaluating the factorb for
2D fractal flames with the help of Eq.~2!,

b2D511
Q

2

~Q21!2

Q31Q213Q21
, ~13!

and the factorb asb2D5Rw /Rc we find the estimate for the
fractal excessd2D of 2D flames as shown in Fig. 9. The sol

e

a

a-

FIG. 8. The scaled second critical tube width as a function of
expansion coefficient. Markers represent the results of the num
cal simulations, solid line shows analytical results from Ref.@16#.
The dashed line shows the estimation taking into account the th
from Ref. @12#.
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line in Fig. 9 presents the evaluation of the fractal exc
made on the basis of the analytical theory@9,16#, while the
markers show the evaluation performed by use of the
merical results of the present paper. As one can see,
evaluations are rather close to each other predicting the f
tal dimension 1.18–1.22 for 2D flames with realistic expa
sion coefficients. The fractal dimension depends on the
pansion coefficient of the flame increasing with increase

FIG. 9. Excess of the fractal dimension over the embedd
dimension as a function of the expansion coefficient. The solid
presents the evaluation on the basis of the analytical theory@9,16#
and the markers show the evaluation using the present nume
results for the 2D case. The dashed line is the estimation for the
case.
.
d

.

s

-
th
c-
-
x-
f

the fuel expansion. In the case of 3D flames the DL insta
ity is stronger at the nonlinear stage and a larger fractal
cess over the embedding dimension is expected. The velo
amplification for 3D flames on every step of the fractal stru
ture is about twice larger than in the 2D case@24,19,25#

b3D511
Q~Q21!2

Q31Q213Q21
, ~14!

There are no results on stability limits of 3D curved statio
ary flames yet, therefore the only estimate for the factorb3D
available so far comes from the theory of 2D flames. Ado
ing the estimateb3D'4 in the 3D case we obtain the evalu
ation for the fractal excess of a 3D flame front shown in F
9 by the dashed line. The estimated fractal dimension
pends also on the expansion coefficient of the flame pred
ing the values 2.3–2.35 for flames with realistic expans
coefficients. Though the last estimates are very tentat
they agree well with the experimentally measured valu
2.33 of the fractal dimension for spherically expanding lab
ratory flames@22#.
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